Localization and position operators in Möbius covariant theories.

Nicola Pinamonti

II Institute für Theoretische Physik
Hamburg Universität

Wien, 26 March 2007
Plan of the talk

▶ **Localization**: As emerging from symmetry.
▶ The case of Mübius covariance.
▶ New aspect: **Position operators** arising from a modification of the generators of the group.
▶ **Example**: Massless KG scalars on 2D Minkowski.

References

Motivations

- **Causality** is an important concept in relativistic physics.

 “Spatially separated events cannot interact.”

- In QFT at level of “second quantization”. Local observables are charactered by \mathbb{R}-linear spaces of local wave-functions.

- It is **not** completely **intrinsic**. It seems to depend on the particular representation of the functions.

- *Brunetti Guido and Longo*: Localization (\mathbb{R}-linear spaces) descends from symmetrey group.

- Do observables compatible with this localization exsit?

- We analyze the case of Möbius covariant theories.
Is it a trivial task?

- **Quantum mechanics:** *Example:* Particle on the line. $L^2(\mathbb{R}, dx)$ states, $|\psi(x)|^2$ probability distribution.

- Coordinate: $X : \psi(x) \mapsto x\psi(x)$, self-adjoint operator.

- Local states in $[a, b]$ are: $L^2([a, b], dx) \subset L^2(\mathbb{R}, dx)$.

- If $\psi \in L^2([a, b], dx)$ and $\|\psi\| = 1$

 $$a \leq (\psi, X\psi) \leq b$$

 We say X its compatible with locality.
Relativistic situation

In relativistic theories

- **Example:** Scalar KG field on 2D Minkowski.
- Chose a space-like Hypersurface, then
- *Localization* and *coordinate* can be defined as above. This is called Newton Wigner (NW) localization.

- **Problem:** NW Localization is not preserved by evolution.

 (Classical information cannot travel faster then light?).

It seems not Physically reasonable.
Quantization scheme and localization

For flat spacetime:

- **First quantization:** \textit{(a la Wigner)}

 - One-particle Hilbert space \mathcal{H}.

 - (anti)-unitary representation of the Poincarré group.

- **Second quantization:**

 - Consider the Fock space $\mathcal{F} := \mathcal{F}(\mathcal{H})$ built by \mathcal{H} and the vacuum Ω.

 - Weyl operators $W(\psi)$ on \mathcal{F}.

Nicola Pinamonti

Localization and position operators in Möbius covariant theories.
Localization: Operators need to be smeared.

\(\mathcal{O} \) a region of spacetime.
Consider real local function with support in a region \(\mathcal{O} \).
By means of causal propagator \(E \).

\[
f : \mathcal{O} \to \mathbb{R}, \quad \mathcal{K}_\mathcal{O} := \{ \psi_f \in \mathcal{H} | \psi_f = Ef, D(f) \subset \mathcal{O} \}
\]
\(\mathcal{K}_\mathcal{O} \) is a \(\mathbb{R} \)-linear subset of the one-particle Hilbert space \(\mathcal{H} \).

von Neumann algebras. \(\mathcal{A}(\mathcal{O}) := \{ W(\psi) | \psi \in \mathcal{K}_\mathcal{O} \}'' \)

if \(\mathcal{O} \) is a double cone \(\mathcal{A}(\mathcal{O}) \) is in standard form:
\(\Omega \) is cyclic and separating.
Digression Tomita Takesaki modular theory.

- Then if \(A \in \mathcal{A} \) (standard) exists an operator \(S \) from \(\mathcal{A}\Omega \) to \(\mathcal{A}\Omega \) realizing the star operation

\[
SA\Omega = A^*\Omega
\]

- Has a polar decomposition \(S := J\Delta^{1/2} \)
- \(\Delta \) self-adj. positive. \(\Delta^{it}\Delta^{-it} = A \) (modular transf.)
- \(J \) is an anti-unitary operator. \(JA\Omega = \mathcal{A}' \) (modular conj.)
- \(\mathcal{A} \) on \(\Omega \) satisfy the KMS condition w.r. to modular transf.
- For Wedges in Minkowski spacetime, have a geometrical meaning: \(J \) is a Reflection and \(\Delta^{it} \) are Boosts (Bisognano Wichmann)
- Be \(\psi = A\Omega \), with \(A^* = A \), in the one particle Hilbert state then: \(S\psi = \psi \). And also if \(\psi \in \mathcal{K} \): \(S\psi = \psi \).
New scheme

Revert the point of view:

- Recognize $J_\mathcal{O}$ and $\Delta_\mathcal{O} = e^{-D_\mathcal{O}}$ within the group of symmetry for sufficiently many local sets \mathcal{O}.

- Consider $S_\mathcal{O} := J_\mathcal{O} \Delta_\mathcal{O}^{1/2}$.

- Assume $\mathcal{K}_\mathcal{O} := \{\psi | S\psi = \psi\}$ as a definition for \mathbb{R}-linear subspace of \mathcal{H} of object local in \mathcal{O}.

Properties:

- If $\mathcal{O}_1 \subset \mathcal{O}_2$ then $\mathcal{K}_{\mathcal{O}_1} \subset \mathcal{K}_{\mathcal{O}_2}$ \hfill (Isotony)
- If \mathcal{O}_1 and \mathcal{O}_2 spatially separated $\mathcal{K}_{\mathcal{O}_1} \cap \mathcal{K}_{\mathcal{O}_2} = \emptyset$ \hfill (Locality)
- Local function: dense in $\mathcal{H} := \overline{\mathcal{K}_\mathcal{O} + i\mathcal{K}_\mathcal{O}}$.

Nicola Pinamonti
Localization and position operators in Möbius covariant theories.
Möbius group: geometric aspects

Conformal transformations of \mathbb{C} where S^1 is fixed.

\[x \rightarrow \frac{ax + b}{cx + d}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2, \mathbb{R}). \]

$PSL(2, \mathbb{R})$ transformation on $\mathbb{P}\mathbb{R}$.

$j : x \rightarrow -x$ in $\mathbb{R} \cup \{\infty\}$ involution.

Iwasawa decomposition: $g \in PSL(2, \mathbb{R})$

\[g := T(x)\Lambda(y)P(z), \quad x, y, z \in \mathbb{R}, \]

h, d, c: generators

\[[h, d] = h, \quad [c, d] = -c, \quad [c, h] = 2d. \]
Local sets: $I \subset \mathcal{I}$ proper interval $I = [a, b]$ in \mathbb{R}.

$\forall I$, the decomposition: $g : = T_I(x)\Lambda_I(y)P_I(z)$ and a j_I exist.

(A) Reflection covariance: j_I maps I to I' and $j_{gI} = gj_Ig^{-1}$.

(B) Λ covariance: $\Lambda_I(t)$ maps I to I and $\Lambda_{gI}(t) = g\Lambda_I(t)g^{-1}$.

(C) Positive inclusions:

- If $t > 0$, $T_I(t)$ maps I to $I_t \subset I$ and
 $$\Lambda_I(b)T_I(t)\Lambda_I(-b) : = T_I(e^{2\pi b}t);$$

- If $p < 0$, $P_I(p)$ maps I to $I_p \subset I$ and
 $$\Lambda_I(b)P_I(p)\Lambda(-b) : = P_I(e^{-2\pi b}p).$$

Lesson: A particular decomposition selects a particular interval.
Properties of \mathbb{R}-linear Subspaces

- **Quantum Theory:** \mathcal{H} Hilbert space. U_g positive energy (anti)-unitary representation of the Möbius group.

- **Decompositions:** $U_g := T_I(x)\Lambda_I(y)P_I(z)$, and J_I

 - **Generators of $PSL(2,\mathbb{R})$:** Selfadjoint operators H_I, D_I and C_I satisfy:
 \[
 [H_I, D_I] = iH_I, \quad [C_I, D_I] = -iC_I, \quad [H_I, C_I] = 2iD_I.
 \]

 - J_I the corresponding antiunitary transformation.

- **Remark:** A decomposition selects an interval I in an abstract way. Thus intrinsically.
Properties of \mathbb{R}-linear Subspaces

Fix a particular decomposition, then

- Modular structure:
 - $\Delta_I := e^{-2\pi D_I}$ (modular operator)
 - J_I (modular conjugation)

- Real subspaces from modular operators: $S_I := J_I \Delta_I^{1/2}$ and $\mathcal{K}_I := \{\psi | S_I \psi = \psi\}$

- From now on we choose the decomposition for the upper semicircle I_1
 (positive part of $\mathbb{P}\mathbb{R}$).
 H, D, C the self adj. generators and J the anti-unitary involution. $\Delta := \exp -2\pi D$
Digression: POVM

- **Pauli Theorem:** It is not possible to have a selfadjoint operator X, showing CCR with P bounded from below.

- Gen. of rotation $(H + C)/2$ is positive, does not exists a self-adj. operator representing a global coordinate.

- Ordinary QM: E energy and T time. Usually this is circumvent enlarging the concept of observable to POVM. (Naimark).

- In KMS states E is not bounded from below, then a selfadjoint T operator exists. (Narnhofer, Thirring)

- We are searching for local coordinates for the interval I: it has to show CCR with the generator of modular transformation.
From positive inclusions: $[H, D] = iH \ [C, D] = -iC$

Candidates for X showing CCR with D: $\log H$ and $\log C$

$$\gamma \log(C) - (1 - \gamma) \log H + f(D).$$

But we want it being compatible with emerging locality:

If $\psi \in \mathcal{K}_{[a,b] \subset I_1}$,

$$\log (a) \Vert \psi \Vert^2 \leq (\psi, X\psi) \leq \log (b) \Vert \psi \Vert^2.$$

We have the following results

- D is positive on $\psi \in \mathcal{K}_{I_1}$.
 (See also Guido and Longo).
- For every $\psi \in \mathcal{K}_{[a,b] \subset I_1}$, the subsequent inequalities hold

$$a^2(\psi, H\psi) \leq (\psi, C\psi) \leq b^2(\psi, H\psi).$$
Some energy bounds

If $\psi \in \mathcal{K}_{I_1}$ then $(\psi, D\psi) \geq 0$.

Proof steps: $J \Delta^{1/2} \psi = \psi$ and $JDJ = -D$.

$F(\alpha) := (\psi, D\Delta^{\alpha} \psi)$, $F(0) = -F(1)$,

$\frac{d}{d\alpha} F(\alpha) \leq 0$ if $0 \leq \alpha \leq 1$. Then $F(0) \geq 0$.

For every $\psi \in \mathcal{K}_{[a,b] \subset I_1}$, the subsequent inequalities hold

$$a^2 (\psi, H\psi) \leq (\psi, C\psi) \leq b^2 (\psi, H\psi).$$

Proof steps: $U := e^{-iaH}$, $\psi \in \mathcal{K}_{[a,b]}$ then $\varphi := U\psi \in \mathcal{K}_{I_1}$

$$(\psi, C\psi) = (\varphi, C + 2aD + a^2 H\varphi) \geq (\varphi, 2aD + a^2 H\varphi) \geq (\psi, a^2 H\psi).$$
Modular coordinate

Idea: it seems possible to use “energies” for measuring positions. In fact, since log is a monotone function

\[\log(a) \leq \left(\log \langle C \rangle_\psi - \log \langle H \rangle_\psi \right)/2 \leq \log(b), \]

where \(\langle C \rangle_\psi = (\psi, C\psi) \).

Eventually we shall see that

\[X = \frac{1}{2} \log(H^{-1/2}CH^{-1/2}) \]

NB The domain needs to be fixed properly.
From H, C, D generate a representation of $PSL(2, \mathbb{R})$ on \mathcal{H}.

- Decompose \mathcal{H} in irreducible representations $\mathcal{H} = \bigoplus_i \mathcal{H}_i$.

\[
\tilde{H} := \frac{H^2}{2}, \quad \tilde{D} := \frac{D}{2}, \quad \tilde{C} := \frac{H^{-1/2}CH^{-1/2}}{2}
\]

- Enjoy $sl(2, \mathbb{R})$ commutation relations.
- There is a dense set of analytic vectors on every \mathcal{H}_i.
- Generate a positive-energy unitary representation \tilde{U} of the covering group of $SL(2, \mathbb{R})$ on \mathcal{H}.
- For the lowest eigenvalues of rotation gen. we have $\tilde{k} = k/2 + 1/4$

Let $\psi \in \mathcal{K}_I$ where $I = [a, b] \subset I_1$ then

\[
\frac{a^2}{2} \|\psi\|^2 < (\psi, \tilde{C}\psi) < \frac{b^2}{2} \|\psi\|^2.
\]
Position Operator

Since the logarithm is also an operator monotone function, we get
\[X := \frac{1}{2} \log(2\tilde{C}). \]

- It is self-adjoint on a suitable domain.
- It shows CCR with \(D \):
 \[[D, X] := i \]
- It is compatible with emerging locality: \(\psi \in \mathcal{K}[a,b] \subset l_1 \)
 \[\log(a) \|\psi\|^2 \leq (\psi, X\psi) \leq \log(b) \|\psi\|^2 \]
Massless scalar field on $\mathbb{R}_{1,1}$: coordinate of a Wedge

- 2D Minkowski: $ds^2 = -dt^2 + dx^2$,
- Massless KG equation has two modes, \textit{in-} and \textit{out-}
- One-particle Hilbert space is $L(\mathbb{R}^+, dE) \oplus L(\mathbb{R}^+, dE)$.
- On $L(\mathbb{R}^+, dE)$, the representation of the Möbius group is generated by:

\[
H := E, \quad D = -i\sqrt{E} \frac{d}{dE} \sqrt{E}, \quad C = -\sqrt{E} \frac{d^2}{dE^2} \sqrt{E},
\]

and the anti-unitary involution: the complex conjugation.
If we read them in the following coordinates: $\mathbb{R}_{1,1} := -dv \, du$

The action of $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on wave-function $\partial_v \psi(v)$ reads:

$$U_g \partial_v \psi(v) = \frac{1}{(cv' + d)^2} \partial_{v'} \psi(v'), \quad v' = \frac{dv - b}{a - cv}$$

- Emerging localization is compatible with that of the wedges.
- A Model for Quantum coordinates inside a wedge.
- The scheme, does not work for massive fields: the one particle Hilbert space is only one $L^2(\mathbb{R}^+, dh)$. ($h = p + \sqrt{p^2 + m^2}$)
- In this case we get at most an operator measuring a spatial coordinate.
Summary

- Localization can arise from the group properties.

- Also in the case of Möbius covariant theory. \textit{(Positive energy representation)}

- An operator representing a local coordinate arises modifying the energy and the conformal energy
 - CCR with generator of modular transformation.
 - expectation values on local wavefunction compatible with localization.